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Reflection Analysis of FDTD Boundary
Conditions—Part II: Berenger’s

PML Absorbing Layers
Deane T. Prescott,Member, IEEE,and Nicholas V. Shuley,Member, IEEE

Abstract— This paper presents an in-depth analysis of
Berenger’s perfectly matched layer (PML) boundary truncation
technique. The impedance and dispersion relationships for
the fields within the PML media are derived to gain a better
understanding of the nature of field propagation within such
regions. The mechanisms which contribute toward reflection
from a PML region are then described. Using this knowledge
of the PML absorbing layers, a numerical method is developed,
which allows the reflection from such layers to be calculated
exactly.

Index Terms—Absorbing boundary conditions, FDTD, time
domain.

I. INTRODUCTION

RECENTLY, Berenger [1] introduced the perfectly
matched layer (PML) as an alternative to the con-

ventional absorbing boundary conditions to truncate the
computational domain in finite-difference time-domain
(FDTD) simulations. The novelty and efficiency of this
technique has created a large amount of interest and is set
to revolutionize the FDTD field.

The more commonly used absorbing boundary conditions,
such as that proposed by Mur [2], calculate the FDTD bound-
ary fields as a function of the internal FDTD fields, their time
history, and a knowledge of the outgoing wave’s propagation
characteristics. These methods unfortunately have been shown
in the past to be very sensitive to the frequency and propa-
gation direction of the radiation incident upon them [3]. As a
result, these boundaries have had to be placed at large distances
from radiators and scatterers, such that they can be effective.

The PML truncation technique operates in a completely
different manner. Instead of approximating the outward trav-
eling radiation, a layer of absorbing material is placed around
the outer boundaries of the FDTD computational domain.
Outward traveling waves then gradually diminish as they travel
deeper into the lossy material, effectively being absorbed. This
layer also has the property that it isperfectly matched. The
wave impedance in the PML is the same as the space which
it surrounds, which results in a theoretically reflectionless
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transmission of all waves into the PML medium. The reflection
from a PML boundary is then dependant only upon the PML’s
depth and conductivity, and is independent of frequency and
incidence angle. A PML boundary, designed to give a required
level of absorption, can then be placed extremely close to any
scatterer/radiator.

A number of authors [4], [5], have already made use of PML
boundaries, managing to obtain extraordinarily low levels of
reflection. Katzet al. [6] extended the PML technique to
three-dimensional (3-D) space, and Jurgens [5] implemented
PML boundaries in cylindrical coordinates. Gribbons, Pinello,
and Cangellaris [7] investigated the impact of PML’s on the
dispersive characteristics of planar waveguiding structures.

To date, however, there exists little comment within the
literature upon the mechanisms behind the reflection from
PML layers, methods to calculate such reflections without
performing an FDTD simulation, and more importantly, how
to design PML layers. The object of this contribution is to
rigorously analyze wave propagation within the PML medium
such that the reflection from a PML boundary can be computed
exactly. It is hoped that this will then be the first step toward
designing the most efficient PML boundaries possible.

The methodology behind the PML boundary will be briefly
described first. The dispersion relationship for the fields within
the PML media will then be derived so that one has an exact
knowledge of the relationships between the nodal fields in both
space and time. Next, it will be shown that the wave impedance
is indeedperfectly matched—this will aid in the understanding
of wave transmission from free-space into a PML medium.
The various mechanisms which contribute toward producing
reflections will be described and how the total reflection
from an arbitrary PML boundary can be calculated will be
demonstrated. Finally, some numerical results based upon the
authors’ findings will be provided.

II. THEORY

A. The PML Absorbing Boundary Method

This section briefly describes the theory behind the PML
absorbing boundary method. For greater detail, the reader
is referred to [1] and [6]. The theory will be presented
and analyzed in two-dimensional (2-D) space using the–
plane. We will be concerned only with the , ,
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field components (TM polarization). However, the theory is
applicable for 2-D TE and 3-D FDTD PML.

The PML is an artificial lossy medium. It is characterized
by an electrical conductivity and a magnetic conductivity

. These are chosen to give a required level of attenuation
within the medium and are related to each other as follows:

(1)

This relationship ensures that the wave impedance inside the
PML equals the free-space wave impedance, and that the phase
velocity inside the PML is the vacuum speed of light [6].

Berenger also shows that transmission through PML/PML
interfaces of any arbitrary incident wave will be reflectionless
if the conductivity has a certain anisotropy characteristic.
For this, Berenger demonstrates that the components of the
conductivities in the direction(s) transverse to, and either
side of, the media interface must be equal. Now since free-
space can be considered as a PML region with

, then the tangential to the boundary components of
the conductivities in a PML region should be set to zero.
Excluding corner regions, which will not be discussed in this
paper, this implies that the PML medium has only a normal
(to the boundary) directed component of conductivity.

Consider a PML half-space, located at (see Fig. 1).
The PML/PML matching condition described above will result
in the conductivity being anisotropic with only being
nonzero. To deal with this anisotropy, the FDTD equation for
the field component, which involves differentials in both
the - and -directions, must be split into two subcomponents,

and . This results in there being four coupled field
equations for the PML region as follows:

(2)

(3)

(4)

(5)

These equations can be descretized to form the FDTD time-
stepping equations for the PML region. The field equations
which do not contain a conductivity component, (2) and (5),
are discretized in exactly the same way as the equivalent
standard-FDTD equations. For the remaining field equations
(3) and (4), explicit exponentially differenced time-stepping
is employed [1], [8]. The resulting four FDTD time-stepping
equations for the PML region are then

(6)

(7)

Fig. 1. A PML/free-space boundary in thex–z plane.

(8)

(9)

where , , , , , and have their usual FDTD
meanings.

These equations can be directly implemented to model a
PML medium in an FDTD simulation. All that is required is
to choose the depth of the PML boundary and its conductivity.
Theoretically, the PML boundary could be designed one
Yee-cell deep and have near-infinite conductivity to produce
maximum absorption. Unfortunately, reflections occur as a
result of sharp variations in the conductivity. It has been shown
that increasing the conductivity gradually with depth reduces
the magnitude of these reflections; hence, the “layering” of the
medium, . It should also be noted that the PML region
is usually terminated with an electric wall—however, this is
not a necessary restriction.

B. Dispersion within the PML Medium

Before the reflection from the PML can be calculated, it is
necessary for one to have a complete knowledge of exactly
how the fields within the medium are related to each other
and how they propagate. This is achieved by calculating the
impedance and dispersion relationships for the PML medium.

A difference equation will first be derived involving only
one field component for a homogenous PML region. From
this, one will be able to obtain the dispersion relationship. We
will solve for by solving for both and

individually as functions of , and then combining the
results.
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First, let one find by applying (6) twice in
time. Thus

(10)

If (9) is substituted into (10) and rearranged, then

(11)

is obtained, where is the speed of light in a
vacuum. To simplify the following section of this analysis the
following substitution will be made:

(12)

Now can be found by applying (7) twice in
time. Thus

(13)

If (8) is substituted into (13) and rearranged, then

(14)

is obtained, where is the impedance of free-
space.

Now, let one assume an dependence for
all field components, where and are the wavenumbers in
the - and -directions, respectively. At this point, one should
note that is now complex with the imaginary component
indicating decay in the -direction. If one substitutes this
dependence into (11) and (14), then

(15)

(16)

is obtained. By adding (15) to (16), one can form a single
equation for —this is the dispersion relationship. With

some algebra, one obtains

(17)

where

(18)

Note that this field-dispersion relation differs from that for
free-space in an FDTD domain [9] only by the multiplication
of the -dependent term by , a factor which corrects for the
effects of the PML conductivity. It can easily be shown that

as , a result that would be expected.
Equation (17) can now be used to solve for, which will be

required when solving for the reflection from a PML medium.

C. Impedance of the PML Medium

The impedance of the PML medium can be defined in vari-
ous ways. Since the impedance represents the ratio between the
electric and magnetic fields, two impedances will be defined
for the fields within a PML or FDTD region. These are

(19)

(20)

To derive , one will substitute the harmonic dependance
( ) into (9), thus

(21)

One can then find as

(22)

It is easy to show that this is exactly the same as that for an
FDTD region. In the case of , a little extra work is required.
If the above procedure is repeated by substituting the harmonic
dependence into (8), one obtains

(23)

where is the -component of the wavenumber in the PML
region. At this point, it appears as though this relationship
is not the same as that for free-space. However, assume that
the fields within the PML region are part of a plane wave that
has travelled from free-space into the PML. It can be observed
from the FDTD and PML time-stepping equations that the field
dependance in the transverse (to the boundary) directions for
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Fig. 2. Field components near a PML/free-space boundary.

the plane wave in both regions are identical—thus, .
If the dispersion relations for both regions are then compared,
making note of the observation for , then the following
result can be deduced:

(24)

where is the -component of the wavenumber in the FDTD
free-space region. If this result is substituted into (23), one
obtains the same , impedance ratio that would be
obtained for a free-space FDTD region

(25)

The above results clearly show that Berenger’s assumptions
regarding theperfect matchingof the PML region to FDTD
free-space are correct.

D. Reflection from the PML Boundary

It can now be seen from the previous results that the PML
medium has the same impedance as the FDTD medium which
it encloses, and by solution of (17), one can readily find that
any wave entering the PML region must decay as it travels
deeper into the medium. Why then is there reflection from a
PML absorbing boundary?

There are two mechanisms which govern the amount of
reflection created by a PML absorbing boundary. These are: 1)
reflections between PML/free-space and PML/PML interfaces
and 2) the amount of decay experienced as the incident wave
travels through the PML medium.

Reflections between the PML/free-space and PML/PML
boundaries are the greatest contributor to the overall reflection.
What creates these if the two regions are matched? Consider
the field components on and near a PML/free-space boundary
as shown in Fig. 2.

The field components on the free-space side are calculated
using the FDTD time-stepping equations, whereas, the fields
within the PML region are calculated using the PML expo-
nentially differenced time-stepping equations (6)–(9). When
calculating (Fig. 2) the FDTD equations require

(a)

(b)

Fig. 3. Positioning of the PML/free-space boundary within the FDTD mesh
(a) on theHx field components and (b) on theEy field components.

the magnitude of the field component . If there
is no reflecting wave, then the FDTD equation will expect the
magnitude of to equal (dotted
line in Fig. 2). Unfortunately, because the field
component is within the PML region, a small amount of decay
has occurred to the traveling wave, and the magnitude of
this component is less than what the FDTD equations would
expect. This results in the generation of the reflected wave.

In much the same way, the calculation of the
field component using the PML equations would expect the
magnitude of the component in the FDTD
free-space region to be greater than what it would actually be.

So, to calculate the amount of reflection from the PML/free-
space boundary, one must consider the fields calculated by
both of the mismatched time-stepping equations.

Consider a PML/free-space boundary located at ,
[Fig. 3(a)], where the field component is located on the
boundary and is calculated as part of the PML region. At

, the reflected and transmitted field components
on either side of the boundary must be matched. Thus

(26)

where and are the components of the field, which
are incident and reflecting (transmitting) from this node on
the FDTD free-space side. and are the incident and
reflecting (transmitting) components from the PML region as
shown in Fig. 3(a).

At , the component is calculated, and so the
reflected and transmitted components here must be matched.
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Thus

(27)

Now these field components are related to the field
components of (26) by the impedance and the spatial
phase change which they undergo . Thus, (27) can
be rewritten as

(28)

where and are the -components of the wavenumber
in the FDTD and PML regions, respectively.

Now the incident and reflected components on the PML side
and are also related to each other by the reflection

of the traveling component, , reflecting off the next
boundary. Thus

(29)

where is the distance to the next discontinuity and is
the reflection experienced by an field component at that
discontinuity.

These three equations for the field, (26), (28), and
(29), can now be solved to find the total reflection
for the field at the free-space/PML boundary located at

. Thus, is shown in (30) at the bottom
of the page. However, there are some points to note about
this result. This equation only applies to the calculation of
the reflection for an field component with the boundary
placed upon a line of nodes. The reflection for the
component at this node is . If the
free-space/PML boundary was located half a space step in the

direction, then one would have an field component on
the PML boundary and an field component on the free-
space FDTD side of the boundary [see Fig. 3(b)]. In this case,
it can be shown by a very similar analysis that the reflection
for an field component from this boundary is ,
shown in (31) at the bottom of the page. The total reflection
from an arbitrary multilayered PML absorbing boundary can
now be calculated simply by cascading the calculations for the
reflections, interface by interface, from the perfect conductor at
the edge of the PML layers back toward the FDTD free-space.

III. N UMERICAL RESULTS

The accuracy of the above technique for calculating the
reflection from an arbitrary PML was checked using an FDTD
simulator. However, the magnitude of the reflections in the
FDTD simulations, which were performed at a single fre-
quency, quickly converged upon those achieved using the

Fig. 4. Reflection from a PML/free-space boundary as a function of the
normalized magnetic conductivity,���z. �=�z = 20, (a) incidence angle
� = 0

�, (b) � = 30
�, and (c)� = 60

�.

analytical formulation. This occurred for all angles of in-
cidence, frequency, and choice of PML construction. The
FDTD simulation was found to agree with the analytical
solution to an accuracy of around 10of the magnitude of
the monochromatic excitation. As a result, it is not feasible
to compare the two methods for calculating the reflection
graphically. The object of providing the numerical results
contained in this section is to demonstrate the advantages of
being able to accurately predict the reflective properties of
a PML absorbing boundary. This analytical ability may then
provide one with a greater insight into how the most suitable
PML layering for a given problem is designed.

In the following sets of results, the conductivity and wave-
length will be presented in a normalized form: and

, respectively. One should, in fact, normalize with re-
spect to ; however, since has been set, then

will be directly proportional to . The reason for this
normalization is that the spatial discretization size can then be
neglected as a factor which may affect the amount of reflection
from a PML boundary. It is also useful to use the form,
as this is also used as a criterion by which the FDTD-mesh
discretization sizes are chosen.

The reflection resulting from a plane wave incident upon
a PML half-space from a vacuum will be investigated first.
This is performed by setting to zero in (30). Fig. 4
shows the reflection from a free-space/PML boundary as a

(30)

(31)
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Fig. 5. Reflection from a PML/free-space boundary as a function of inci-
dence angle�. �=�z = 20. (a) ���z = 10

0, (b) ���z = 10
2, and (c)

���z = 10
4.

function of the normalized magnetic conductivity. One can
see that as the conductivity is increased, so too does the
amount of reflection. In fact, the increase is almost linear until
approximately . At this point, the PML begins
to act like a perfect conductor with the incident field being
totally reflected.

It is also interesting to note that as the angle of incidence is
increased, the amount of reflection decreases. In fact, one can
see by examining (30) that if the incidence angle is increased
to 90 then the reflection will decrease to zero. This effect
can be readily seen in Fig. 5. It is interesting to note that the
amount of reflection remains reasonably constant as the angle
of incidence is increased until approximately when a
severe drop off is experienced.

Fig. 6 demonstrates the dependence of the reflection upon
the excitation wavelength. One can see that above ,
the reflection becomes very constant.

Next, various PML constructions will be analyzed. Berenger
examined a number of different forms of PML layering. In
those cases, the conductivity was either constant or gradually
increased from zero to a maximum at the electric-wall
termination

(32)

where is the depth within the PML region of total depth
, and is the order of the conductivity’s increase (

linear, parabolic). Fig. 7 shows the effect of increasing
the order of the polynomial, which governs the PML conduc-
tivity (32) upon the reflection as a function of the maximum
conductivity.

One can readily see that introducing the conductivity grad-
ually with depth does present improved performance over
having a constant PML loss ( ). One can also note
that increasing the order of the polynomial, which defines the

Fig. 6. Reflection from a PML/free-space boundary as a function of nor-
malized wavelength,�=�z. ���z = 10

4. (a) incidence angle� = 0
�, (b)

� = 30
�, and (c)� = 60

�.

Fig. 7. Reflection from various PML constructions (32) as a function of
the maximum normalized magnetic conductivity,��

m
�z. Depthd = 16�z,

�=�z = 20, � = 0
�. (a) polynomial ordern = 0 constant, (b)n = 1 linear,

(c) n = 2 parabolic, (d)n = 3, (e) n = 4, (f) n = 5, and (g)n = 6.

PML conductivity (32), can provide improved performance
until around . For , one sees that there is no
improvement in the performance of the PML boundary. It is
also interesting to note that for the higher order polynomials,
the reflection function becomes less smooth for conductivities
above the minimum point.

The parabolically graded PML boundaries have received
the greatest attention in the literature. Although these PML
constructions may not achieve the optimal amount of absorp-
tion, this attention may have resulted because of the lack of
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Fig. 8. Reflection from parabolic PML constructions of various depths as a
function of the maximum normalized magnetic conductivity.�=�z = 20,
� = 0�. (a) depthd = 4�z, (b) d = 6�z, (c) d = 10�z, (d) d = 16�z,
and (e)d = 24�z.

Fig. 9. Reflection from parabolic PML constructions of various maximum
conductivity as a function of normalized wavelength.d = 16�z, � = 0�.
(a) ��

m
�z = 200, (b) ��

m
�z = 400, (c) ��

m
�z = 2 � 103, (d)

��
m
�z = 38 � 103, and (e)��

m
�z = 200� 103.

any previous accurate analysis method. The following sets of
results will concern only the parabolic PML boundaries. The
trends evident in the results have been shown to be consistent
among all of the polynomial PML constructions (32).

Fig. 8 shows the reflection from a range of parabolic PML
absorbing boundaries with varying depth as a function of the
maximum conductivity.

As should be expected, the maximum amount of absorption
achieved increases with the PML depth. However it is inter-
esting to note that the PML boundaries with the least depth,

Fig. 10. Reflection from parabolic PML constructions of various maximum
conductivity as a function of incidence angle.d = 16�z, �=�z = 20.
(a) ��

m
�z = 200, (b) ��

m
�z = 400, (c) ��

m
�z = 2 � 103, (d)

��
m
�z = 38� 103, and (e)��

m
�z = 200� 103.

and , are able to create a reasonable level
of absorption. This is probably a result of the fact that for
the shallower PML boundaries, the major factor governing
the total absorption is the interference of the reflecting and
transmitting waves between the PML layers, and not the actual
conductive loss.

A number of points have been marked in Fig. 8, indicating
points of interest in the results for a PML of depth .
These points will be referred to in the following numerical
analyses and have been chosen as they represent various
choices of maximum conductivity, which result in different
PML reflection characteristics.

Fig. 9 shows the reflection from a range of parabolic PML
absorbing boundaries with various maximum conductivities as
a function of the normalized wavelength. The first observation
that one can make is that the reflection functions appear
to remain within a range of around 10 dB across most of
the spectrum. One can also observe a smooth convergence
as the frequency decreases except for the case when the
maximum conductivity is at a local minimum (
and ). These points indicate undesirable
choices for maximum conductivity.

Fig. 10 shows the reflection from a range of parabolic PML
absorbing boundaries with various maximum conductivities
as a function of the incidence angle. For the conductivities
lower than or equal to the first minimum, and

, the functionality is the same as that predicted
by Berenger [1], a gentle rise (logarithmically) to 1. However,
after the first minimum, the reflection function assumes a
very desirable form; that is, it becomes reasonably constant
for a large range of incident angles, assuming almost a step
function as grazing incidence is approached. Once again, the
choice of conductivity at the other local minima (

) produces an unfavorable response. Above the second
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minimum, on the plateau region ( ),
one can observe an extra element of distortion. These less-
smooth responses which occur as the maximum conductivity
is increased well above the absolute minimum may influence
whether to use higher order polynomial PML boundaries, as
they contain an increasing number of the local minima (see
Fig. 7).

IV. CONCLUSION

An in-depth analysis of Berenger’s PML boundary trun-
cation technique has been presented. The impedance relation-
ships for the fields within the PML medium have been derived
and it has been shown that the impedance of the PML is
equal to that of the free-space it surrounds. The dispersion
relationship for the fields within the PML medium has also
been derived and clearly shows that propagation through the
PML medium varies from the propagation in free-space only
in the normal direction, where conductive loss occurs.

Some logical points regarding the PML absorbing boundary
have been provided to aid in the understanding of how a
material with aperfectly matchedimpedance is able to generate
a reflection. It is found that there are two mechanisms which
contribute toward the total amount of reflection generated from
a PML absorbing boundary. These are: 1) reflections between
PML/free-space or PML/PML interfaces and 2) the amount
of decay experienced as the incident wave travels through the
PML medium.

An exact analytical formulation for the calculation of the
reflection from an arbitrary PML construction was then devel-
oped. Although it was not feasible to compare the algorithm’s
accuracy to an actual FDTD simulation (due to its accuracy),
a range of numerical results was presented. It was found
that PML boundaries involving a parabolic increase of the
conductivity with depth may not be the best design for PML
layering. It was found that the absorptive abilities of the PML
boundaries are generally quite stable across a large spectrum
of frequencies. Finally, it was found that the range of incident
angles for which the polynomial-type PML boundaries are
most effective could be maximized by correctly choosing the
maximum conductivity.

ACKNOWLEDGMENT

The authors wish to note that while this paper was in
preparation it was discovered that Gribbonset al. [7] had
independently developed a solution for the field dispersion
relationship within a PML medium in differential form using
a very similar technique to that used to obtain (17).

REFERENCES

[1] J. P. Berenger, “A perfectly matched layer for the absorption of
electromagnetic waves,”J. Comput. Phys.,vol. 114, pp. 185–200, Aug.
1994.

[2] G. Mur, “Absorbing boundary conditions for the finite-difference ap-
proximation of the time-domain electromagnetic-field equations,”IEEE
Trans. Electromag. Compat.,vol. EMC-23, pp. 377–382, Nov. 1981.

[3] J. Fang, “Absorbing boundary conditions applied to model wave
propagation in microwave integrated-circuits,”IEEE Trans. Microwave
Theory Tech.,vol. 42, pp. 1506–1513, Aug. 1994.

[4] C. E. Reuter, R. M. Joseph, E. T. Thiele, D. S. Katz, and A.
Taflove, “Ultrawideband absorbing boundary condition for termination
of waveguiding structures in FD–TD simulations,”IEEE Microwave
Guided Wave Lett.,vol. 4, pp. 344–346, Oct. 1994.

[5] T. G. Jurgens, “A broadband absorbing boundary condition for the
FDTD modeling of circular waveguides,” inIEEE MTT-S Int. Symp.
Dig., Orlando, FL, May 1995, pp. 35–38.

[6] D. S. Katz, E. T. Thiele, and A. Taflove, “Validation and extension to
three dimensions of the Berenger PML absorbing boundary condition
for FD–TD meshes,”IEEE Microwave Guided Wave Lett.,vol. 4, pp.
268–270, Aug. 1994.

[7] M. A. Gribbons, W. P. Pinello, and A. C. Cangellaris, “A stretched
coordinate technique for numerical absorption of evanescent and prop-
agating waves in planar waveguiding structures,” inIEEE MTT-S Int.
Symp. Dig.,Orlando, FL, May 1995, pp. 31–34.

[8] R. Holland, “Finite-difference solution of Maxwell’s equations in gener-
alized nonorthogonal coordinates,”IEEE Trans. Nucl. Sci.,vol. NS-30,
pp. 4589–4591, Dec. 1983.

[9] A. Taflove and K. R. Umashankar, “The finite-difference time-domain
method for numerical modeling of electromagnetic wave interactions,”
Electromagnetics,vol. 10, pp. 105–126, 1990.

Deane T. Prescott(S’91–M’97), for a photograph and biography, see this
issue, p. 1170.

Nicholas V. Shuley(S’79–M’85), for a photograph and biography, see this
issue p. 1170.


