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Reflection Analysis of FDTD Boundary
Conditions—Part Il: Berenger’s
PML Absorbing Layers

Deane T. Prescottylember, IEEE,and Nicholas V. ShuleyMember, IEEE

Abstract— This paper presents an in-depth analysis of transmission of all waves into the PML medium. The reflection
Berenger’s perfectly matched layer (PML) boundary truncation  from a PML boundary is then dependant only upon the PML’s
technique. The impedance and dispersion relationships for depth and conductivity, and is independent of frequency and

the fields within the PML media are derived to gain a better . id le. APML b d desi dto i ired
understanding of the nature of field propagation within such 'M¢ld€nce angie. oundary, gesigned to give a require

regions. The mechanisms which contribute toward reflection l€Vvel of absorption, can then be placed extremely close to any
from a PML region are then described. Using this knowledge scatterer/radiator.
of the PML absorbing layers, a numerical method is developed, A number of authors [4], [5], have already made use of PML
which allows the reflection from such layers to be calculated boundaries, managing to obtain extraordinarily low levels of
exactly. reflection. Katzet al. [6] extended the PML technique to
Index Terms—Absorbing boundary conditions, FDTD, time three-dimensional (3-D) space, and Jurgens [5] implemented
domain. PML boundaries in cylindrical coordinates. Gribbons, Pinello,
and Cangellaris [7] investigated the impact of PML'’s on the
I. INTRODUCTION dispersive characteristics of planar waveguiding structures.
ECENTLY, Berenger [1] introduced the perfectly, To date, however, there gxists Iittl_e comment wi.thin the
. literature upon the mechanisms behind the reflection from
matched layer (PML) as an alternative to the co

. . i, ML layers, methods to calculate such reflections without
ventional absorbing boundary conditions to truncate the . . : .
. o - . . .performing an FDTD simulation, and more importantly, how
computational domain in finite-difference time-domai . . : A
X . . . o design PML layers. The object of this contribution is to
(FDTD) simulations. The novelty and efficiency of this. : s .
) ; ._rigorously analyze wave propagation within the PML medium
technique has created a large amount of interest and is S

L X sSuch that the reflection from a PML boundary can be computed
to revolutionize the FDTD field. . L ;
The more commonly used absorbing boundary Conditionexactly. It is hoped that this will then be the first step toward
esigning the most efficient PML boundaries possible.

such as that proposed by Mur [2], calculate the FDTD bound=rp o610y behind the PML boundary will be briefly

ary fields as a function of the internal FDTD fields, their tlm%escribed first. The dispersion relationship for the fields within

history, and a knowledge of the outgoing wave’s propagaticme PML media will then be derived so that one has an exact

_characterlstlcs. These methq(_ds unfortunately have been Sh?("r\lgwledge of the relationships between the nodal fields in both
in the past to be very sensitive to the frequency and propa- . L ;
: S L Space and time. Next, it will be shown that the wave impedance
gation direction of the radiation incident upon them [3]. As &. T .
. .. Is indeedperfectly matchee-this will aid in the understanding
result, these boundaries have had to be placed at large distances C ) .
of Wave transmission from free-space into a PML medium.

from radiators and scatterers, such that they can be effecti\ﬁ.e various mechanisms which contribute toward producing

_The PML truncation technique o_pergtes n a Complete%flections will be described and how the total reflection
different manner. Instead of approximating the outward trayr- m an arbitrary PML boundary can be calculated will be

eling radiation, a layer of absorbing material is placed aroun d .
; ; .demonstrated. Finally, some numerical results based upon the

the outer boundaries of the FDTD computational domalg. thors' findinas will be provided

Outward traveling waves then gradually diminish as they trave g P '

deeper into the lossy material, effectively being absorbed. This

layer also has the property that it erfectly matchedThe

wave impedance in the PML is the same as the space which IIl. THEORY

it surrounds, which results in a theoretically reflectionless

A. The PML Absorbing Boundary Method
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field components (TM polarization). However, the theory is
applicable for 2-D TE and 3-D FDTD PML.

The PML is an artificial lossy medium. It is characterized
by an electrical conductivityyr and a magnetic conductivity
o*. These are chosen to give a required level of attenuation
within the medium and are related to each other as follows:

=Z, (1)

This relationship ensures that the wave impedance inside the
PML equals the free-space wave impedance, and that the phase
velocity inside the PML is the vacuum speed of light [6].
Berenger also shows that transmission through PML/PML
interfaces of any arbitrary incident wave will be reflectionle g
if the conductivity has a certain anisotropy characteristic.™
For this, Berenger demonstrates that the components of the
conductivities in the direction(s) transverse to, and either
side of, the media interface must be equal. Now since free-
space can be considered as a PML region with= ¢, =
0. = 0, then the tangential to the boundary components of
the conductivities in a PML region should be set to zero.
Excluding corner regions, which will not be discussed in this
paper, this implies that the PML medium has only a normal
(to the boundary) directed component of conductivity.
Consider a PML half-space, locatedat> 0 (see Fig. 1).
The PML/PML matching condition described above will result
in the conductivity being anisotropic with only. being
nonzero. To deal with this anisotropy, the FDTD equation for
the £, field component, which involves differentials in both
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1. A PML/free-space boundary in the-z plane.
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HITY2(i 4 5 k)
1 At
_ n—1/2{ . - _
HT <L+2,k> oir
R+ 1L k) ER(i+ 1, k)
— By (i, k) = By.(i, k)] (9)

[EN, (i, k+1)

the z- andz-directions, must be split into two subcomponentsvhere Az, Az, At, n, i, and k have their usual FDTD
E,, and E,.. This results in there being four coupled fieldnéanings.

equations for the PML region as follows:

These equations can be directly implemented to model a

PML medium in an FDTD simulation. All that is required is

dE,.  OH.
0 ot — Ox
1o = t’” +o*H, = HEya + Byz)
" a;;@ _ 8(nya;r Eyz) ®)

@) to choose the depth of the PML boundary and its conductivity.
Theoretically, the PML boundary could be designed one
A3) Yee-cell deep and have near-infinite conductivity to produce
maximum absorption. Unfortunately, reflections occur as a
(4) result of sharp variations in the conductivity. It has been shown
Oz that increasing the conductivity gradually with depth reduces
the magnitude of these reflections; hence, the “layering” of the
medium, (k). It should also be noted that the PML region

These equations can be descretized to form the FDTD tirﬂ'g_usually terminated with an electric wall—however, this is

stepping equations for the PML region. The field equatio
which do not contain a conductivity component, (2) and (5),

Mot a necessary restriction.

are discretized in exactly the same way as the equivalgit Dispersion within the PML Medium

standard-FDTD equations. For the remaining field equations
(3) and (4), explicit exponentially differenced time-stepping
is employed [1], [8]. The resulting four FDTD time-steppingﬂ
equations for the PML region are then

Before the reflection from the PML can be calculated, it is
ecessary for one to have a complete knowledge of exactly
ow the fields within the medium are related to each other

and how they propagate. This is achieved by calculating the

At
n+1l/; o n (.
Eya—cl— (Lv k) - Eyac(Lv k)

impedance and dispersion relationships for the PML medium.

YAV »

' [ 2+1/2(i %’ k) ‘H;H—I/Q(L - %7 k‘)] (6)
1-— G—Uz(k)At/EO
E*FL — o—o:(R)At/co pn 1= 7=Mat/o
ve (k) =c v=(t k) + o.(k)Az

CHZT2( e+ L) - HIPY2(0 k= B)lp @)

A difference equation will first be derived involving only
one field component for a homogenous PML region. From
this, one will be able to obtain the dispersion relationship. We
will solve for £, = £, + E,. by solving for bothE,, and
E,. individually as functions oft,, and then combining the
results.
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First, let one findEgjl — Ey, by applying (6) twice in some algebra, one obtains

time. Thus
L : sin? wAt
E;La—;l—l(Lv k) - E;La;(Lv k) cAt 2
: —1; At 12 kew Az 12 k. Az
=E" (i, k) — E"1(i, k) — B T I N Y 2
y( ) y (4, k) coAr <Aa:) sm< 5 )+<Az> sin < 5 )xP
[HIPV (i 4 5, k) — HI TP+ 4, k) (17)
—HIM2 - L R+ H V-4 B (10) yhere
If (9) is substituted into (10) and rearranged, then P co(l— A) IwAl/2 _ c—iwat/2 (19)

n . n o/ n—1/- o, At cIwAL/2 _ pAe—jwAt/2"

Eya—;l—l(zv k) - 2Eya;(zv k) + Eya; 1(17 k) N . . . . . .

9 ote that this field-dispersion relation differs from that for

:<£At> [En(i+1, k) = 2ED(i, k) + EJ(i — 1, k)] free-space in an FDTD domain [9] only by the multiplication
Az of the z-dependent term by??, a factor which corrects for the

(11) effects of the PML conductivity. It can easily be shown that

. . _ ) . P — 1ascg, — 0, a result that would be expected.
is obtained, where: = 1/,/iéo is the speed of light in @ g4, ati0n (17) can now be used to solve fior which will be

vacuum. To simplify the following section of this analysis th¢q jired when solving for the reflection from a PML medium.
following substitution will be made:

A =g =At/ C. Impedance of the PML Medium

— A po (12) The impedance of the PML medium can be defined in vari-
ous ways. Since the impedance represents the ratio between the
Now Egjl — AE}, can be found by applying (7) twice in electric and magnetic fields, two impedances will be defined

time. Thus for the fields within a PML or FDTD region. These are
Byt k) = AE}.(i, k) Zo=1" (19)
1-A4 *
= AE" (i, k) — AET (i ,
A yz([’7 k) A Yz (L’ k) + O'ZAZ Zz = % (20)

HZT2 6 k+ ) — AHPTY (6 R+ %)

_H:H/Q(i’ I %) +AH;}_1/2(1', I %)]' (13) To derive Z., one will substitute the harmonic dependance

(e7te=Ika®o=ik=2) into (9), thus

If (8) is substituted into (13) and rearranged, then H'(i + %7 k)(eijt/Q _ e—ijt/Q)
n+1l/. n (s 2pn—1y, . .
EJT (i, k) = 2AE) (4, k) + A“E (4, k) = _E" <L n %7 k) AAt (e Iha A2 _ ke Av/2y
1-4 \ .. . o Hooe
= <m> [Ey (i, k+1)=2E) (i, k)+E/ (i, k—1)] (21)
(14) One can then findZ. as
is obtained, whereZ = \/uo/€o is the impedance of free- sin <W_At>
space. 7. = HoAx 2/ (22)
Now, let one assume ad“!c—7*=%¢=Jk=% dependence for - At . kzAz
all field components, wherk, andk. are the wavenumbers in 2

is easy to show that this is exactly the same as that for an
DTD region. In the case df,, a little extra work is required.

If the above procedure is repeated by substituting the harmonic
dependence into (8), one obtains

the z- and z-directions, respectively. At this point, one shoultt
note thatk, is now complex with the imaginary componen
indicating decay in thez-direction. If one substitutes this
dependence into (11) and (14), then

E;Lw(L, I{})[Gj“"At -2+ e—ijt] p 1100 Az IWAL/2 _ fo—jwAt/2 23)
2 ) z = — S R
= _E';L(f[,7 k) <%‘;) [e]kIAl‘ _ 2 + e—]kl-AJ}] (15) €0 (1 A) e~ eJ

' ' wherek_,, is thez-component of the wavenumber in the PML
E} (i, k)2 — 24 + A%e™/w2Y region. At this point, it appears as though this relationship
1-AN2 ) is not the same as that for free-space. However, assume that
=Ep(i, k) <Z0_ A7> [e*+3% — 24 ¢7/K=2%]  (16) the fields within the PML region are part of a plane wave that
= has travelled from free-space into the PML. It can be observed
is obtained. By adding (15) to (16), one can form a singfeom the FDTD and PML time-stepping equations that the field
equation forE (i, k)—this is the dispersion relationship. Withdependance in the transverse (to the boundary) directions for
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Fig. 2. Field components near a PML/free-space boundary.

the plane wave in both regions are identical—thius, = k.. free-space FHL
If the dispersion relations for both regions are then compared,
making note of the observation fdr,, then the following
result can be deduced:

60(1 _ A) eijt/Q _ e—ijt/Q ejk;pAz/Q _ e—jk;pAz/Q IEJ.
O AE GIWAL2 _ Ae—JwAl/2 gikiiAz[2 _ o—jko A2
=1 Hy
W
(24)
wherek. ¢ is thez-component of the wavenumber in the FDTD
free-space region. If this result is substituted into (23), one (b)
Obta!ns the samés,, H. impedance I:atICZ’” thai would be Fig. 3. Positioning of the PML/free-space boundary within the FDTD mesh
obtained for a free'Space FDTD region (a) on theH, field components and (b) on ttg, field components.
g <wAt>
11
7 _ oAz 2 (25) the magnitude of the field componeht, (i, k = £). If there
¥ At (kgpAzY is no reflecting wave, then the FDTD equation will expect the
St 2 magnitude ofH,(i, k = ) to equalE, (i, k = 0)/Z, (dotted

_line in Fig. 2). Unfortunately, because t&, (i, k = 1) field
The above results clearly show that Berenger’'s assumptlone 9. 2) y e, (i, 3)

X ; ) co%nponent is within the PML region, a small amount of decay
regarding theperfect matchingof the PML region to FDTD has occurred to the-~ traveling wave, and the magnitude of
free-space are correct.

this component is less than what the FDTD equations would
expect. This results in the generation of the reflected wave.

In much the same way, the calculation of tHe(é, k = £)

It can now be seen from the previous results that the PMield component using the PML equations would expect the
medium has the same impedance as the FDTD medium whiplgnitude of theE,(i¢, ¥ = 0) component in the FDTD
it encloses, and by solution of (17), one can readily find théee-space region to be greater than what it would actually be.
any wave entering the PML region must decay as it travelsSo, to calculate the amount of reflection from the PML/free-
deeper into the medium. Why then is there reflection fromspace boundary, one must consider the fields calculated by
PML absorbing boundary? both of the mismatched time-stepping equations.

There are two mechanisms which govern the amount ofConsider a PML/free-space boundary located at %Az,
reflection created by a PML absorbing boundary. These are[Ejg. 3(a)], where theH, field component is located on the
reflections between PML/free-space and PML/PML interfacé&®undary and is calculated as part of the PML region. At
and 2) the amount of decay experienced as the incident wave %Az, the reflected and transmittddl,. field components

D. Reflection from the PML Boundary

travels through the PML medium. on either side of the boundary must be matched. Thus
Reflections between the PML/free-space and PML/PML ‘ ‘
boundaries are the greatest contributor to the overall reflection. H;+H;=H, +H, (26)

What creates these if the two regions are matched? Consider

the field components on and near a PML/free-space boundwlyereH} and H are the components of th€, field, which

as shown in Fig. 2. are incident and reflecting (transmitting) from this node on
The field components on the free-space side are calculathd FDTD free-space sidé{; and H;, are the incident and

using the FDTD time-stepping equations, whereas, the fieldslecting (transmitting) components from the PML region as

within the PML region are calculated using the PML expashown in Fig. 3(a).

nentially differenced time-stepping equations (6)—(9). When At z = 0, the £, component is calculated, and so the

calculatingE, (i, k = 0) (Fig. 2) the FDTD equations requirereflected and transmitted components here must be matched.
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Thus - T T T T
E} + E} = E]’) + EIZ) 27)

Now theseE, field components are related to ti#g, field 10
components of (26) by the impedancg, and the spatial
phase change which they undergé’*-2. Thus, (27) can
be rewritten as

H}G-I—jk;fAz/Q _ H}‘e—jk;fAz/Q
_ H;}’G-I—jk;pAz/Q _ H]i)e—jk;pAz/Q
(28)

Reflection Coefficient, IRI

wherek.; and k., are thez-components of the wavenumber B
in the FDTD and PML regions, respectively. o F

Now the incident and reflected components on the PML side
H; and H} are also related to each other by the reflection 7
of the 4+~ traveling componentd?, reflecting off the next 10
boundary. Thus

-3 -2 -1 0 +1 +Z +3 +4 +5 +

H), = Hje k2 g+ (29)

Normalized Magnetic Conductivity, 6Az

whered is .the diStance to the next Qiscontinuity ard'* is Fig. 4. Reflection from a PML/free-space boundary as a function of the
the reflection experienced by &, field component at that normalized magnetic conductivitg;* Az. A/Az = 20, (a) incidence angle
discontinuity. 6 = 0°, (b) & = 30°, and (c)¢ = 60°.

These three equations for thd, field, (26), (28), and

(29), can now be solved to find the total reflectiédfj,,... analytical formulation. This occurred for all angles of in-
for the H, field at the free-space/PML boundary located &jgence, frequency, and choice of PML construction. The
# = 3Az Thus, Rf . is shown in (30) at the bottom EpTD simulation was found to agree with the analytical
of the page. However, there are some points to note ab@gjution to an accuracy of around 1D of the magnitude of
this result. This equation only applies to the calculation ghe monochromatic excitation. As a result, it is not feasible
the reflection for ani,, field component with the boundaryty compare the two methods for calculating the reflection
placed upon a line off, nodes. The reflection for th&, graphically. The object of providing the numerical results
component at thigl,, node iSRf 4. = —Rjf noae- If the  contained in this section is to demonstrate the advantages of
free-space/PML boundary was located half a space step in figng able to accurately predict the reflective properties of
£z direction, then one would have &), field component on 5 ppL absorbing boundary. This analytical ability may then

the PML boundary and af, field component on the free- ooyide one with a greater insight into how the most suitable
space FDTD side of the boundary [see Fig. 3(b)]. In this cagsy_ layering for a given problem is designed.

it can be shown by a very similar analysis that the reflection |, he following sets of results, the conductivity and wave-

for an H, field component from this boundary By i |ength will be presented in a normalized form*A~- and
shown in (31) at the bottom of the page. The total reflectlo/(n/AZ' respectively. One should, in fact, normalize with re-
from an arbitrary multilayered PML absorbing boundary caglpect toA#+ however. sinceAz — Az has been set. then
now be calculated simply by cascading the calculations for the, iy pe directly proportional toAz. The reason for this
reflections, interface by interface, from the perfect Conducmrl"?tgrmalization is that the spatial discretization size can then be
the edge of the PML layers back toward the FDTD free'Sp""(i‘?egIected as a factor which may affect the amount of reflection

from a PML boundary. It is also useful to use theAz form,

as this is also used as a criterion by which the FDTD-mesh
The accuracy of the above technique for calculating thtscretization sizes are chosen.

reflection from an arbitrary PML was checked using an FDTD The reflection resulting from a plane wave incident upon

simulator. However, the magnitude of the reflections in thee PML half-space from a vacuum will be investigated first.

FDTD simulations, which were performed at a single freFhis is performed by settingz?’* to zero in (30). Fig. 4

qguency, quickly converged upon those achieved using thlBows the reflection from a free-space/PML boundary as a

I1l. NUMERICAL RESULTS

o HikapA2/2 _ otikagAz/2 _ RH+—ikapAz/2 _ RH+gt+ik:rAz/2

Rg d = — T - T - T - T - (30)
node etik:pAz/2 + e~ JkeyAz/2 _ RHA+—jk:pAz/2 + RHAo—jk=rAz/2

G-I—jk;pAz/Q _ G-I—jk;fAz/Q +RH+6—jk;pAz/2 +RH+6+jk;fAz/2

- etik=pAz/2 4 o—ik:yAZ/2 | RH+o—jk:pAz/2 _ RH+ —jk:yAz/2 (31
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Fig. 5. Reflection from a PML/free-space boundary as a function of indnd: 6- Reflection from a P*ML/free—sgace boundary as a fU”CtiOO” of nor-
dence angle). A\/Az = 20. (a) o*Az = 10°, (b) o*Az = 102, and (c) malized wavelengthA\/Az. c*Az = 10*. (a) incidence anglé = 0°, (b)
o*Ar = 104 6 = 30°, and (c)f = 60°.

function of the normalized magnetic conductivity. One can ' ‘ ' ‘ r
see that as the conductivity is increased, so too does the N -
amount of reflection. In fact, the increase is almost linear until
approximatelyo*Az =~ 103. At this point, the PML begins

to act like a perfect conductor with the incident field being
totally reflected.

It is also interesting to note that as the angle of incidence is
increased, the amount of reflection decreases. In fact, one can
see by examining (30) that if the incidence angle is increased
to 9C° then the reflection will decrease to zero. This effect
can be readily seen in Fig. 5. It is interesting to note that the
amount of reflection remains reasonably constant as the angle
of incidence is increased until approximatély: 70° when a
severe drop off is experienced.

Fig. 6 demonstrates the dependence of the reflection upon
the excitation wavelength. One can see that abo\dez = 20,
the reflection becomes very constant.

Next, various PML constructions will be analyzed. Berenger W 10 1@ 10 w0 10 1 i F
examined a number of different forms of PML layering. In
those cases, the conductivity was either constant or graduall

. d f . h | . I ig. 7. Reflection from various PML constructions (32) as a function of
Increased irom zero to a maximum, at the electric-wall 1o maximum normalized magnetic conductivity;, Az. Depthd = 16Az,
termination

A/Az = 20,6 = 0°. (a) polynomial order: = 0 constant, (by. = 1 linear,
(c) n = 2 parabolic, (d)n = 3, ()n =4, (f) n = 5, and (g)n = 6.

Reflection Coefficient, IR|
=3

Maximum Normalized Magnetic Conductivity, 6,Az

(k) = am(%)" (32)

where z is the depth within the PML region of total depthPML conductivity (32), can provide improved performance
d, andn is the order of the conductivity’s increase & 1 until aroundn = 5. For n = 6, one sees that there is no
linear,n = 2 parabolic). Fig. 7 shows the effect of increasingmprovement in the performance of the PML boundary. It is
the order of the polynomial, which governs the PML condu@lso interesting to note that for the higher order polynomials,
tivity (32) upon the reflection as a function of the maximunthe reflection function becomes less smooth for conductivities
conductivity. above the minimum point.

One can readily see that introducing the conductivity grad- The parabolically graded PML boundaries have received
ually with depth does present improved performance ovére greatest attention in the literature. Although these PML
having a constant PML lossn(= 0). One can also note constructions may not achieve the optimal amount of absorp-
that increasing the order of the polynomial, which defines thien, this attention may have resulted because of the lack of
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Reflection Coefficient, IR]
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Reflection Coefficient, IRI
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Incidence Angle, 6

Maximum Normalized Magnetic Conductivity, LAz

Fig. 8. Reflection from parabolic PML constructions of various depths a{%gr{dt%tivitR egictéilo?uI]ré)trignpe(\)rfaibn(ﬂ:geil\élé_ ;gnzrlftifgzgf \/@”Aoy s_m(;)(()imum
function of the maximum normalized magnetic conductivityy Az = 20, @) o* A./y_ 200, (b) oX Az = 400 (cg) &*’_A-/ . 2 X 10; -(d)

— N° — - — 6A > —_ A ~ —_ A~ m—~ el m—~ , m=~ - ’
gna L(’e)'d(a)_dggi“f =44z, (0)d =64z, (€)d =104z, (d)d =164z, Jx \T'_ '35, 103 and ()07, A= = 200 x 107,

] ] d =4Az andd = 6Az, are able to create a reasonable level
10° of absorption. This is probably a result of the fact that for
the shallower PML boundaries, the major factor governing
N the total absorption is the interference of the reflecting and
N © - transmitting waves between the PML layers, and not the actual
- T TTTTT T . conductive loss.

10 N A number of points have been marked in Fig. 8, indicating
A points of interest in the results for a PML of depihk= 16Az.

' These points will be referred to in the following numerical
P - analyses and have been chosen as they represent various
NV 4 choices of maximum conductivity, which result in different
W' e . PML reflection characteristics.

Fig. 9 shows the reflection from a range of parabolic PML
absorbing boundaries with various maximum conductivities as
L a function of the normalized wavelength. The first observation
B | that one can make is that the reflection functions appear
10° [ to remain within a range of around 10 dB across most of
0 20 30 40 50 60 70 8 90 100 the spectrum. One can also observe a smooth convergence
Normalized Wavelength, A/Az as the frequency decreases except for the case when the
Fig. 9. Reflection from parabolic PML constructions of various maximunmaxntzum CondUCtIVItyg Is ata Iocal_mlnl_mu_mr;(lAz - 490
conductivity as a function of normalized wavelength= 16Az, # = ¢°. and o, Az = 38 x 10°). These points indicate undesirable
(@) o, Az = 200, (b) ok,Az = 400, (¢) o5,Az = 2 x 10%, (d) choices for maximum conductivity.
oAz = 38 x 10%, and (e)oy, Az = 200 x 107, Fig. 10 shows the reflection from a range of parabolic PML
absorbing boundaries with various maximum conductivities
any previous accurate analysis method. The following setsas a function of the incidence angle. For the conductivities
results will concern only the parabolic PML boundaries. Thiewer than or equal to the first minimum;;, Az = 240 and
trends evident in the results have been shown to be consistefjiAz = 400, the functionality is the same as that predicted
among all of the polynomial PML constructions (32). by Berenger [1], a gentle rise (logarithmically) to 1. However,

Fig. 8 shows the reflection from a range of parabolic PMafter the first minimum, the reflection function assumes a
absorbing boundaries with varying depth as a function of tivery desirable form; that is, it becomes reasonably constant
maximum conductivity. for a large range of incident angles, assuming almost a step

As should be expected, the maximum amount of absorptiumction as grazing incidence is approached. Once again, the
achieved increases with the PML depth. However it is intechoice of conductivity at the other local minimaj(Az =
esting to note that the PML boundaries with the least deptt x 103) produces an unfavorable response. Above the second

Reflection Coefficient, IR
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minimum, on the plateau regionv{,Az = 200 x 10%), ACKNOWLEDGMENT
one can observe an extra element of distortion. These 'eSSThe authors wish to note that while this paper was in

smooth responses which occur as the maximum conductivgyep(,mmOn it was discovered that Gribboesal [7] had
is increased well above the absolute minimum may influentgyenendently developed a solution for the field dispersion
whether to use higher order polynomial PML boundaries, a§jationship within a PML medium in differential form using
they contain an increasing number of the local minima (S%every similar technique to that used to obtain (17).
Fig. 7).
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